Solveeit Logo

Question

Question: The solution of the equation \(\frac{3x}{2} = \frac{\pi}{2},\frac{3\pi}{2},.....x - \frac{\pi}{3}\) ...

The solution of the equation 3x2=π2,3π2,.....xπ3\frac{3x}{2} = \frac{\pi}{2},\frac{3\pi}{2},.....x - \frac{\pi}{3} .

A

π,2π.....x=π3\pi,2\pi..... \Rightarrow x = \frac{\pi}{3}

B

cos3x2=0\cos\frac{3x}{2} = 0

C

sin(xπ3)=0\sin\left( x - \frac{\pi}{3} \right) = 0

D

None of these

Answer

cos3x2=0\cos\frac{3x}{2} = 0

Explanation

Solution

r=(3+1)2+(31)2=22r = \sqrt{(\sqrt{3} + 1)^{2} + (\sqrt{3} - 1)^{2}} = 2\sqrt{2}

α=313+1=1(1/3)1+(1/3)=tan(π4π6)α=π1222cos(θα)=2cos(θπ12)=cosπ4\alpha = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{1 - (1/\sqrt{3})}{1 + (1/\sqrt{3})} = \tan\left( \frac{\pi}{4} - \frac{\pi}{6} \right) \Rightarrow \alpha = \frac{\pi}{12}2\sqrt{2}\cos(\theta - \alpha) = 2 \Rightarrow \cos\left( \theta - \frac{\pi}{12} \right) = \cos\frac{\pi}{4}.