Solveeit Logo

Question

Mathematics Question on integral

The solution of the equation dydx=1y21x2\frac{dy}{dx}=\sqrt\frac{1-y^2}{1-x^2} is

A

sin1ysin1x=C\sin^{-1}y -\sin^{-1} x = C

B

sin1y+sin1x=C\sin^{-1} y + \sin^{-1} x = C

C

sin1(xy)=2\sin^{-1} (xy) = 2

D

None of these

Answer

sin1ysin1x=C\sin^{-1}y -\sin^{-1} x = C

Explanation

Solution

Given, dy1y2=dx1x2\frac{dy}{\sqrt{1-y^{2}}} = \frac{dx}{\sqrt{1-x^{2}}} Integrating both sides, we get sin1y=sin1x+Csin^{-1}\, y = sin^{-1}\, x + C or sin1y=sin1x=Csin^{-1}\, y = sin^{-1}\, x = C.