Solveeit Logo

Question

Question: The solution of the equation \(\frac{- 7 - 26i}{25}\)....

The solution of the equation 726i25\frac{- 7 - 26i}{25}.

A

7+26i25\frac{- 7 + 26i}{25}

B

7+26i25\frac{7 + 26i}{25}

C

(z+a)(zˉ+a)(z + a)(\bar{z} + a)

D

aa

Answer

(z+a)(zˉ+a)(z + a)(\bar{z} + a)

Explanation

Solution

322i(322i)\left| \frac{3}{2} - 2i \right| - \left( \frac{3}{2} - 2i \right)

Let =94+432+2i=5232+2i=1+2i= \sqrt{\frac{9}{4} + 4} - \frac{3}{2} + 2i = \frac{5}{2} - \frac{3}{2} + 2i = 1 + 2i, therefore z1=a+ib=(a,b)z_{1} = a + ib = (a,b)

Equating real and imaginary parts, we get

d>0d > 0and z1=z2|z_{1}| = |z_{2}|a2+b2=c2+d2a^{2} + b^{2} = c^{2} + d^{2}

Hence complex number z1+z2z1z2=(a+ib)+(cid)(a+ib)(cid)\frac{z_{1} + z_{2}}{z_{1} - z_{2}} = \frac{(a + ib) + (c - id)}{(a + ib) - (c - id)}.

Trick : Since =[(a+c)+i(bd)][(ac)i(b+d)][(ac)+i(b+d)][(ac)i(b+d)]= \frac{\lbrack(a + c) + i(b - d)\rbrack\lbrack(a - c) - i(b + d)\rbrack}{\lbrack(a - c) + i(b + d)\rbrack\lbrack(a - c) - i(b + d)\rbrack}

=(a2+b2)(c2+d2)2(ad+bc)ia2+c22ac+b2+d2+2bd= \frac{(a^{2} + b^{2}) - (c^{2} + d^{2}) - 2(ad + bc)i}{a^{2} + c^{2} - 2ac + b^{2} + d^{2} + 2bd}.