Solveeit Logo

Question

Question: The solution of the equation \[\dfrac{{dy}}{{dx}} + \sqrt {\dfrac{{1 - {y^2}}}{{1 - {x^2}}}} = 0\] i...

The solution of the equation dydx+1y21x2=0\dfrac{{dy}}{{dx}} + \sqrt {\dfrac{{1 - {y^2}}}{{1 - {x^2}}}} = 0 is

  1. x1y2y1x2=cx\sqrt {1 - {y^2}} - y\sqrt {1 - {x^2}} = c
  2. x1y2+y1x2=cx\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} = c
  3. x1+y2+y1+x2=cx\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} = c
  4. None of these
Explanation

Solution

Hint: Here, we will separate the variables xx and yy in the given equation. Use the formula of integration 11x2dx=sin1x+c\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx} = {\sin ^{ - 1}}x + c to find the solution of the equation.

Complete step-by-step answer:
Given equation is dydx+1y21x2=0\dfrac{{dy}}{{dx}} + \sqrt {\dfrac{{1 - {y^2}}}{{1 - {x^2}}}} = 0.

We can also write this differential equation.

dydx=1y21x2 dydx=1y21x2  \Rightarrow \dfrac{{dy}}{{dx}} = - \sqrt {\dfrac{{1 - {y^2}}}{{1 - {x^2}}}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt {1 - {y^2}} }}{{\sqrt {1 - {x^2}} }} \\\

We know that the easiest way to solve the above integration is by using the method of separating variables.

Separating the variables xx and yy in the above equation and integrating it, we get

11y2dy=11x2dx\int {\dfrac{1}{{\sqrt {1 - {y^2}} }}} dy = - \int {\dfrac{1}{{\sqrt {1 - {x^2}} }}} dx

Using the formula of integration 11x2dx=sin1x+c\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx} = {\sin ^{ - 1}}x + c in the above equation, we get

sin1y=sin1x+c y=sin(sin1x+c)  {\sin ^{ - 1}}y = - {\sin ^{ - 1}}x + c \\\ y = \sin \left( { - {{\sin }^{ - 1}}x + c} \right) \\\

Thus, the solution of the equation dydx+1y21x2=0\dfrac{{dy}}{{dx}} + \sqrt {\dfrac{{1 - {y^2}}}{{1 - {x^2}}}} = 0 is y=sin(sin1x+c)y = \sin \left( { - {{\sin }^{ - 1}}x + c} \right).

Hence, option D is correct.

Note: In these types of questions, we will require some knowledge of integration to find the solution of the given equation. First, we will rewrite the given equation by separating variable and then integrate it. We will then use the formula of integration 11x2dx=sin1x+c\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx} = {\sin ^{ - 1}}x + c to make the integration easier to solve.