Solveeit Logo

Question

Question: The solution of the equation (2x + y + 1) dx + (4x + 2y – 1) dy = 0 is –...

The solution of the equation (2x + y + 1) dx + (4x + 2y – 1) dy = 0 is –

A

log |2x + y – 1| = C + x + y

B

log (4x + 2y – 1) = C + 2x + y

C

log (2x + y + 1) + x + 2y = C

D

log |2x + y – 1| + x + 2y = C

Answer

log |2x + y – 1| + x + 2y = C

Explanation

Solution

Put 2x + y = X Ž 2 + dydx\frac{dy}{dx} = dXdx\frac{dX}{dx}. Therefore, the given equation is reduced to (see theory the case when aB – bA = 0)

dXdx\frac{dX}{dx} – 2 = – X+12X1\frac{X + 1}{2X - 1} Ž dXdx\frac{dX}{dx} = 3(X1)2X1\frac{3(X - 1)}{2X - 1}

Ž 2X13(X1)\frac{2X - 1}{3(X - 1)} dX = dx Ž 13\frac{1}{3} [2+1X1]\left\lbrack 2 + \frac{1}{X - 1} \right\rbrack dX = dx

Ž 13\frac{1}{3} [2X + log |X – 1|] = x + const

Ž 2(2x + y) + log |2x + y – 1| = 3x + const

Ž x + 2y + log |2x + y – 1| = C.