Solveeit Logo

Question

Question: The solution of the equation (1 + x<sup>2</sup>) (1 + y) dy + (1 + x) (1 +y<sup>2</sup>) dx = 0 is-...

The solution of the equation

(1 + x2) (1 + y) dy + (1 + x) (1 +y2) dx = 0 is-

A

tan–1 x + log (1+ x2) + tan–1 y + log (1 + y‑2) = c

B

tan–1x –12\frac{1}{2}log (1+ x2) + tan–1 y–12\frac{1}{2}log (1+y 2) = c

C

tan–1x +12\frac{1}{2}log(1+x2)+ tan–1y+12\frac{1}{2}log (1 + y 2) = c

D

None of these

Answer

tan–1x +12\frac{1}{2}log(1+x2)+ tan–1y+12\frac{1}{2}log (1 + y 2) = c

Explanation

Solution

(1 + x2) (1+ y) dy + (1+x) (1 + y2) dx = 0

(1+y1+y2)\left( \frac{1 + y}{1 + y^{2}} \right)dy+ (1+x1+x2)\left( \frac{1 + x}{1 + x^{2}} \right)dx = 0

\ (11+y2+y1+y2)dy\int_{}^{}{\left( \frac{1}{1 + y^{2}} + \frac{y}{1 + y^{2}} \right)dy}

+ (11+x2+x1+x2)dx\int_{}^{}{\left( \frac{1}{1 + x^{2}} + \frac{x}{1 + x^{2}} \right)dx} = 0

or tan–1 y +12\frac{1}{2}log (1 + y2) + tan–1 (x) + 12\frac{1}{2}log (1 + x2) = c