Solveeit Logo

Question

Question: The solution of the differential equation\(x ^ { 2 } d y = - 2 x y d x\) is...

The solution of the differential equationx2dy=2xydxx ^ { 2 } d y = - 2 x y d x is

A
B

x2y2=cx ^ { 2 } y ^ { 2 } = c

C

x2y=cx ^ { 2 } y = c

D

xy=cx y = c

Answer

x2y=cx ^ { 2 } y = c

Explanation

Solution

x2dy=2xydxx ^ { 2 } d y = - 2 x y d x1ydy=2xx2dx\frac { 1 } { y } d y = - \frac { 2 x } { x ^ { 2 } } d x

On integrating, logy=2logx+logc\log y = - 2 \log x + \log c

logy=logx2+logc\log y = \log x ^ { - 2 } + \log clogyx2=logc\log y x ^ { 2 } = \log cor yx2=cy x ^ { 2 } = c.