Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation ydx(x+2y2)dy=0ydx - (x + 2y^2)dy = 0 is x=f(y)x = f(y). If f(1)=1f(- 1) = 1, then f(1)f(1) is equal to :

A

4

B

3

C

2

D

1

Answer

3

Explanation

Solution

Given differential equation is ydx(x+2y2)dy=0y d x-\left(x+2 y^{2}\right) d y=0...(1) and solution of (1)(1) is x=f(v)x=f(v); where f(1)=1,f(1)=?f(-1)=1, f(1)=? Rearranging (1), we get ydxdy(x+2y2)=0y \frac{d x}{d y}-\left(x+2 y^{2}\right)=0 dxdy2yxy=0\Rightarrow \frac{d x}{d y}-2 y-\frac{x}{y}=0 or dxdy+(1y)x=2y\frac{d x}{d y}+\left(\frac{-1}{y}\right) x=2 y, which is a linear differential equation of first order dxdy+P\frac{d x}{d y}+P x=Qx=Q; Its I.F. =ePdy=e1ydy=elny=1y =e^{\int P d y}=e^{\int \frac{-1}{y} d y}=e^{-\ln y}=\frac{1}{y} \therefore Solution of (1) is given by x.(I.F)=Q(I.F.)dy+Cx .( I . F )=\int Q( I . F .) dy +C x1y=2y1ydy+C\Rightarrow x \cdot \frac{1}{y}=\int 2 y \cdot \frac{1}{y} dy +C xy=2y+cx=2y2+cy;f(1)=1\Rightarrow \frac{x}{y}=2 y +c \Rightarrow x=2 y^{2}+c y ; f(-1)=1 x+1=2+c(1)c=1x=2y2+y=f(y)x+1=2+c(-1) \Rightarrow c=1 \therefore x=2 y^{2}+y=f(y) f(1)=2+1=3\Rightarrow f(1)=2+1=3