Solveeit Logo

Question

Question: The solution of the differential equation xy2 dy - (x3 +y3) dx = 0 is...

The solution of the differential equation xy2 dy - (x3 +y3) dx = 0 is

A

y3=3x3+cy^{3} = 3x^{3} + c

B

y3=3x3log(cx)y^{3} = 3x^{3}\log(cx)

C

y3=3x3+log(cx)y^{3} = 3x^{3} + \log(cx)

D

y3+3x3=log(cx)y^{3} + 3x^{3} = \log(cx)

Answer

y3=3x3log(cx)y^{3} = 3x^{3}\log(cx)

Explanation

Solution

Given differential equation can be rewritten as

dydx=x3+y3xy2\frac{dy}{dx} = \frac{x^{3} + y^{3}}{xy^{2}}

Put y=νxdydxν+xdνdxy = \nu x \Rightarrow \frac{dy}{dx}\nu + x\frac{d\nu}{dx}

xdνdx=1ν2=x3+ν3x3x3ν2=1+ν3ν2\therefore x\frac{d\nu}{dx} = \frac{1}{\nu^{2}} = \frac{x^{3} + \nu^{3}x^{3}}{x^{3}\nu^{2}} = \frac{1 + \nu^{3}}{\nu^{2}}

\Rightarrow xdνdx=1ν2ν2dν=dxxν33=logx+logcx\frac{d\nu}{dx} = \frac{1}{\nu^{2}} \Rightarrow \int_{}^{}{\nu^{2}d\nu} = \int_{}^{}\frac{dx}{x} \Rightarrow \frac{\nu^{3}}{3} = \log x + \log c

\Rightarrow 13(yx)3=logx+logcy3=3x3logcx\frac{1}{3}\left( \frac{y}{x} \right)^{3} = \log x + \log c \Rightarrow y^{3} = 3x^{3}\log cx