Question
Question: The solution of the differential equation \(x(x - y)\frac{dy}{dx} = y(x + y)\) is...
The solution of the differential equation x(x−y)dxdy=y(x+y) is
A
yx+log(xy)=C
B
xy+log(xy)=C
C
yx+ylogx=C
D
xy+xlogy=C
Answer
yx+log(xy)=C
Explanation
Solution
Let νx−y⇒dxdy=ν+xdxdν=x2−νx2νx2+ν2x2=1−νν+ν2
⇒ xdxdν=1−νν+ν2−ν+ν2=1−ν2ν2
∴ ∫2ν21−νdν=∫x1dx [Integrating both sides]
⇒ 21[ν−1−logν]=logx+C
⇒ 21[y−x−log(xy)−log(x2)]=C
⇒ yx+log(xy.x2)=C⇒yx+log∗xy)=C.