Solveeit Logo

Question

Question: The solution of the differential equation \(x(x - y)\frac{dy}{dx} = y(x + y)\) is...

The solution of the differential equation x(xy)dydx=y(x+y)x(x - y)\frac{dy}{dx} = y(x + y) is

A

xy+log(xy)=C\frac{x}{y} + \log(xy) = C

B

yx+log(xy)=C\frac{y}{x} + \log(xy) = C

C

xy+ylogx=C\frac{x}{y} + y\log x = C

D

yx+xlogy=C\frac{y}{x} + x\log y = C

Answer

xy+log(xy)=C\frac{x}{y} + \log(xy) = C

Explanation

Solution

Let νxydydx=ν+xdνdx=νx2+ν2x2x2νx2=ν+ν21ν\nu x - y \Rightarrow \frac{dy}{dx} = \nu + x\frac{d\nu}{dx} = \frac{\nu x^{2} + \nu^{2}x^{2}}{x^{2} - \nu x^{2}} = \frac{\nu + \nu^{2}}{1 - \nu}

\Rightarrow xdνdx=ν+ν2ν+ν21ν=2ν21νx\frac{d\nu}{dx} = \frac{\nu + \nu^{2} - \nu + \nu^{2}}{1 - \nu} = \frac{2\nu^{2}}{1 - \nu}

\therefore 1ν2ν2dν=1xdx\int_{}^{}{\frac{1 - \nu}{2\nu^{2}}d\nu = \int_{}^{}\frac{1}{x}dx} [Integrating both sides]

\Rightarrow 12[1νlogν]=logx+C\frac{1}{2}\left\lbrack \frac{- 1}{\nu} - \log\nu \right\rbrack = \log x + C

\Rightarrow 12[xylog(yx)log(x2)]=C\frac{1}{2}\left\lbrack \frac{- x}{y} - \log\left( \frac{y}{x} \right) - \log(x^{2}) \right\rbrack = C

\Rightarrow xy+log(yx.x2)=Cxy+logxy)=C.\frac{x}{y} + \log\left( \frac{y}{x}.x^{2} \right) = C \Rightarrow \frac{x}{y} + {\log*}xy) = C.