Question
Question: The solution of the differential equation \(x\log x\frac{dy}{dx} + y = 2\log x\) is...
The solution of the differential equation xlogxdxdy+y=2logx is
A
y=logx+c
B
y=logx2+c
C
ylogx=(logx)2+c
D
y=xlogx+c
Answer
ylogx=(logx)2+c
Explanation
Solution
xlogxdxdy+y=2logx⇒dxdy+xlogx1y=x2
The is linear differential equation in y.
∴ I.F. =e∫xlogx1dx=elogelogex=logx
⇒y(I.F.)=∫Q(I.F.)dx⇒ylogx=∫x2.logxdx
⇒y log x = (log x)2 + c