Solveeit Logo

Question

Question: The solution of the differential equation \(x\log x\frac{dy}{dx} + y = 2\log x\) is...

The solution of the differential equation xlogxdydx+y=2logxx\log x\frac{dy}{dx} + y = 2\log x is

A

y=logx+cy = \log x + c

B

y=logx2+cy = \log x^{2} + c

C

ylogx=(logx)2+cy\log x = (\log x)^{2} + c

D

y=xlogx+cy = x\log x + c

Answer

ylogx=(logx)2+cy\log x = (\log x)^{2} + c

Explanation

Solution

xlogxdydx+y=2logxdydx+1xlogxy=2xx\log x\frac{dy}{dx} + y = 2\log x \Rightarrow \frac{dy}{dx} + \frac{1}{x\log x}y = \frac{2}{x}

The is linear differential equation in y.

\therefore I.F. =e1xlogxdx=elogelogex=logx= e^{\int_{}^{}{\frac{1}{x\log x}dx}} = e^{\log_{e}{\log_{e}x}} = \log x

y(I.F.)=Q(I.F.)dxylogx=2x.logxdx\Rightarrow y(I.F.) = \int_{}^{}Q(I.F.)dx \Rightarrow y\log x = \int_{}^{}\frac{2}{x}.\log{}xdx

\Rightarrowy log x = (log x)2 + c