Solveeit Logo

Question

Question: The solution of the differential equation \(x\frac{dy}{dx} = y(\log y - \log x + 1)\) is...

The solution of the differential equation

xdydx=y(logylogx+1)x\frac{dy}{dx} = y(\log y - \log x + 1) is

A

y=xecxy = xe^{cx}

B

y+xecx=0y + xe^{cx} = 0

C

y+ex=0y + e^{x} = 0

D

None

Answer

y=xecxy = xe^{cx}

Explanation

Solution

Given equation may be expressed as

dydx=yx[log(yx)+1]\frac{dy}{dx} = \frac{y}{x}\left\lbrack \log\left( \frac{y}{x} \right) + 1 \right\rbrack …….(i)

Let yx=v\frac{y}{x} = v ⇒ y = vx ⇒ dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}

∴ From (i), v+xdvdx=v(logv+1)v + x\frac{dv}{dx} = v(\log v + 1)xdvdx=vlogvx\frac{dv}{dx} = v\log v

dvvlogv=dxx\frac{dv}{v\log v} = \frac{dx}{x}1logvd(logv)=dxx\int_{}^{}{\frac{1}{\log v}d(\log v) = \int_{}^{}\frac{dx}{x}}

∴ log (log v) = log x + log c ⇒ log (log v) = log (cx) ⇒ log v = cx ⇒ v=ecxv = e^{cx}yx=ecx\frac{y}{x} = e^{cx}, ∴ y=xecxy = xe^{cx}