Question
Question: The solution of the differential equation \(x\frac{dy}{dx} = y(\log y - \log x + 1)\) is...
The solution of the differential equation
xdxdy=y(logy−logx+1) is
A
y=xecx
B
y+xecx=0
C
y+ex=0
D
None
Answer
y=xecx
Explanation
Solution
Given equation may be expressed as
dxdy=xy[log(xy)+1] …….(i)
Let xy=v ⇒ y = vx ⇒ dxdy=v+xdxdv
∴ From (i), v+xdxdv=v(logv+1) ⇒ xdxdv=vlogv
⇒ vlogvdv=xdx ⇒ ∫logv1d(logv)=∫xdx
∴ log (log v) = log x + log c ⇒ log (log v) = log (cx) ⇒ log v = cx ⇒ v=ecx ⇒ xy=ecx, ∴ y=xecx