Solveeit Logo

Question

Question: The solution of the differential equation xdy – y dx = \(\sqrt{x^{2} + y^{2}}\)dx is –...

The solution of the differential equation

xdy – y dx = x2+y2\sqrt{x^{2} + y^{2}}dx is –

A

x + x2+y2\sqrt{x^{2} + y^{2}} = cx2

B

y – x2+y2\sqrt{x^{2} + y^{2}} = cx

C

x – x2+y2\sqrt{x^{2} + y^{2}}= cx

D

y + x2+y2\sqrt{x^{2} + y^{2}}= cx2

Answer

y + x2+y2\sqrt{x^{2} + y^{2}}= cx2

Explanation

Solution

Given that, x dy – y dx =x2+y2\sqrt{x^{2} + y^{2}}dx

Ž xdy = (x2+y2\sqrt{x^{2} + y^{2}} + y) dx

Ž dydx\frac{dy}{dx}= x2+y2+yx\frac{\sqrt{x^{2} + y^{2}} + y}{x}

Now, put y = vx and dydx\frac{dy}{dx} = v + x dvdx\frac{dv}{dx}

\ v + x dvdx\frac{dv}{dx} = x2+v2x2+vxx\frac{\sqrt{x^{2} + v^{2}x^{2}} + vx}{x}

Ž x dvdx\frac{dv}{dx} = 1+v2\sqrt{1 + v^{2}} + v – v = 1+v2\sqrt{1 + v^{2}}

On integrating both sides

dv1+v2\int_{}^{}\frac{dv}{\sqrt{1 + v^{2}}} = dxx\int_{}^{}\frac{dx}{x}

Ž log (v +1+v2\sqrt{1 + v^{2}}) = log x + log c

Ž y + x2+y2\sqrt{x^{2} + y^{2}}= cx2