Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation xdy+ydx=xydxxdy + ydx = xydx when y(1)=1y(1) = 1 is

A

y=exxy=\frac{e^{x}}{x}

B

exex\frac{e^{x}}{ex}

C

y=xexey=\frac{xe^{x}}{e}

D

none of these

Answer

exex\frac{e^{x}}{ex}

Explanation

Solution

From given xdy+ydxxy=dx\frac{xdy+ydx}{xy}=dx On integration, we get loge(xy)=x+klog_{e}\left(xy\right)=x+k x=1\therefore x=1, y=1y=1 k=1\Rightarrow k=-1 xy=ex1\Rightarrow xy=e^{x-1} xy=exe\Rightarrow xy=\frac{e^{x}}{e} y=exex\therefore y=\frac{e^{x}}{ex}