Solveeit Logo

Question

Question: The solution of the differential equation \(x y \frac { d y } { d x } = \frac { \left( 1 + y ^ { 2...

The solution of the differential equation

xydydx=(1+y2)(1+x+x2)(1+x2)x y \frac { d y } { d x } = \frac { \left( 1 + y ^ { 2 } \right) \left( 1 + x + x ^ { 2 } \right) } { \left( 1 + x ^ { 2 } \right) } is

A

12log(1+y2)=logxtan1x+c\frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = \log x - \tan ^ { - 1 } x + c

B

12log(1+y2)=logx+tan1x+c\frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = \log x + \tan ^ { - 1 } x + c

C

log(1+y2)=logxtan1x+c\log \left( 1 + y ^ { 2 } \right) = \log x - \tan ^ { - 1 } x + c

D

log(1+y2)=logx+tan1x+c\log \left( 1 + y ^ { 2 } \right) = \log x + \tan ^ { - 1 } x + c

Answer

12log(1+y2)=logx+tan1x+c\frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = \log x + \tan ^ { - 1 } x + c

Explanation

Solution

xydydx=(1+y2)(1+x+x2)(1+x2)x y \frac { d y } { d x } = \frac { \left( 1 + y ^ { 2 } \right) \left( 1 + x + x ^ { 2 } \right) } { \left( 1 + x ^ { 2 } \right) }

ydy1+y2=(1+x+x2)x(1+x2)dx=1xdx+dx1+x2\int \frac { y d y } { 1 + y ^ { 2 } } = \int \frac { \left( 1 + x + x ^ { 2 } \right) } { x \left( 1 + x ^ { 2 } \right) } d x = \int \frac { 1 } { x } d x + \int \frac { d x } { 1 + x ^ { 2 } }

12log(1+y2)=logx+tan1x+c\frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = \log x + \tan ^ { - 1 } x + c.