Question
Question: The solution of the differential equation \(x y \frac { d y } { d x } = \frac { \left( 1 + y ^ { 2...
The solution of the differential equation
xydxdy=(1+x2)(1+y2)(1+x+x2) is
A
21log(1+y2)=logx−tan−1x+c
B
21log(1+y2)=logx+tan−1x+c
C
log(1+y2)=logx−tan−1x+c
D
log(1+y2)=logx+tan−1x+c
Answer
21log(1+y2)=logx+tan−1x+c
Explanation
Solution
xydxdy=(1+x2)(1+y2)(1+x+x2)
⇒ ∫1+y2ydy=∫x(1+x2)(1+x+x2)dx=∫x1dx+∫1+x2dx
⇒ 21log(1+y2)=logx+tan−1x+c.