Solveeit Logo

Question

Question: The solution of the differential equation \(x \sec y \frac { d y } { d x } = 1\) is...

The solution of the differential equation xsecydydx=1x \sec y \frac { d y } { d x } = 1 is

A

xsecytany=cx \sec y \tan y = c

B

cx=secy+tanyc x = \sec y + \tan y

C

cy=secxtanxc y = \sec x \tan x

D

cy=secx+tanxc y = \sec x + \tan x

Answer

cx=secy+tanyc x = \sec y + \tan y

Explanation

Solution

xsecydydx=1x \sec y \frac { d y } { d x } = 1secydy=dxx\sec y d y = \frac { d x } { x }

On integrating both sides, we get

log(secy+tany)=logx+logc\log ( \sec y + \tan y ) = \log x + \log csecy+tany=cx\sec y + \tan y = c x.