Solveeit Logo

Question

Question: The solution of the differential equation \[x\dfrac{dy}{dx}+2y={{x}^{2}}\left( x\ne 0 \right)\] with...

The solution of the differential equation xdydx+2y=x2(x0)x\dfrac{dy}{dx}+2y={{x}^{2}}\left( x\ne 0 \right) with y(1)=1,y\left( 1 \right)=1, is:
(a)y=x35+15x2\left( a \right)y=\dfrac{{{x}^{3}}}{5}+\dfrac{1}{5{{x}^{2}}}
(b)y=45x3+15x2\left( b \right)y=\dfrac{4}{5}{{x}^{3}}+\dfrac{1}{5{{x}^{2}}}
(c)y=34x2+14x2\left( c \right)y=\dfrac{3}{4}{{x}^{2}}+\dfrac{1}{4{{x}^{2}}}
(d)y=x24+34x2\left( d \right)y=\dfrac{{{x}^{2}}}{4}+\dfrac{3}{4{{x}^{2}}}

Explanation

Solution

We are given the differential equation as xdydx+2y=x2.x\dfrac{dy}{dx}+2y={{x}^{2}}. We will convert it into a linear form dydx+Py=Q(x)\dfrac{dy}{dx}+Py=Q\left( x \right) and then find the integrating factor using I.F=ePdx.I.F={{e}^{\int{Pdx}}}. Once we have our integrating factor, we will find the solution using y×IF=(Q×IF)dx+C.y\times IF=\int{\left( Q\times IF \right)dx+C}. We will put the value of Q and IF and solve for y which is our required solution.

Complete step-by-step answer:
We are given the differential equation as xdydx+2y=x2.x\dfrac{dy}{dx}+2y={{x}^{2}}. First, we will convert our differential equation into the linear form. We have
xdydx+2y=x2x\dfrac{dy}{dx}+2y={{x}^{2}}
Dividing both the sides by x, we get,
dydx+2yx=x\Rightarrow \dfrac{dy}{dx}+\dfrac{2y}{x}=x
So, we get our linear form. So comparing with dydx+Py=Q,\dfrac{dy}{dx}+Py=Q, we get, P=2xP=\dfrac{2}{x} and Q = x.
Now, to solve further we will find the integrating factor. The integrating factor is given as
I.F=ePdxI.F={{e}^{\int{Pdx}}}
As, P=2x,P=\dfrac{2}{x}, so we get,
I.F=e2xdx\Rightarrow I.F={{e}^{\int{\dfrac{2}{x}dx}}}
As, 1xdx=logx,\int{\dfrac{1}{x}dx}=\log x, so we get,
IF=e2logx\Rightarrow IF={{e}^{2\log x}}
As, nlogx=logxn,n\log x=\log {{x}^{n}}, so we get,
IF=elogx2\Rightarrow IF={{e}^{\log {{x}^{2}}}}
Now, we know that, elogx=x,elogx2=x2,{{e}^{\log x}}=x,{{e}^{\log {{x}^{2}}}}={{x}^{2}}, so we get,
IF=x2\Rightarrow IF={{x}^{2}}
Now, we know the solution is given as,
y×IF=(Q×IF)dx+Cy\times IF=\int{\left( Q\times IF \right)dx+C}
As, IF=x2,Q=x,IF={{x}^{2}},Q=x, so we get,
yx2=(x×x2)dx\Rightarrow y{{x}^{2}}=\int{\left( x\times {{x}^{2}} \right)dx}
yx2=x3dx\Rightarrow y{{x}^{2}}=\int{{{x}^{3}}dx}
As xndx=xn+1n,\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n}, so,
yx2=x44+C\Rightarrow y{{x}^{2}}=\dfrac{{{x}^{4}}}{4}+C
Dividing both the sides by x2,{{x}^{2}}, we get,
y=x24+Cx2\Rightarrow y=\dfrac{{{x}^{2}}}{4}+\dfrac{C}{{{x}^{2}}}
Now, we have y(1) as 1, i.e y (1) = 1. So, putting x = 1 and y = 1, we get,
1=124+C12\Rightarrow 1=\dfrac{{{1}^{2}}}{4}+\dfrac{C}{{{1}^{2}}}
1=14+C1\Rightarrow 1=\dfrac{1}{4}+\dfrac{C}{1}
1=14+C\Rightarrow 1=\dfrac{1}{4}+C
Solving for C, we get,
C=114=34\Rightarrow C=1-\dfrac{1}{4}=\dfrac{3}{4}
Now, we get, C=34.C=\dfrac{3}{4}.
So, putting it in the value of y, we get,
y=x24+34x2\Rightarrow y=\dfrac{{{x}^{2}}}{4}+\dfrac{3}{4{{x}^{2}}}

So, the correct answer is “Option d”.

Note: Remember that while finding the integrating factor, we apply the differentiation. First, we integrate P with respect to x and then solve it over the exponential. As we do that we have P as 2x.\dfrac{2}{x}. So,
2xdx=21xdx\int{\dfrac{2}{x}dx}=2\int{\dfrac{1}{x}dx}
=2logx=2\log x
Then we apply e2xdx=e2logx.{{e}^{\int{\dfrac{2}{x}dx}}}={{e}^{2\log x}}. Also, nlogx=logxn.n\log x=\log {{x}^{n}}. So, we get, elogx2{{e}^{\log {{x}^{2}}}} and then we simplify and get IF as x2.{{x}^{2}}. So, we do it by part by part so that no errors occur.