Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation (x2+y2)dx5xydy=0,y(1)=0(x^2 + y^2) dx - 5xy \, dy = 0, \, y(1) = 0, is:

A

x24y25=x2|x^2 - 4y^2|^5 = x^2

B

x22y26=x|x^2 - 2y^2|^6 = x

C

x24y26=x|x^2 - 4y^2|^6 = x

D

x22y25=x2|x^2 - 2y^2|^5 = x^2

Answer

x24y25=x2|x^2 - 4y^2|^5 = x^2

Explanation

Solution

The given differential equation is:

(x2+y2)dx5xydy=0.(x^2 + y^2)dx - 5xy\,dy = 0.

Step 1: Rewrite in terms of dydx\frac{dy}{dx}

dydx=x2+y25xy.\frac{dy}{dx} = \frac{x^2 + y^2}{5xy}.

Step 2: Substitution

Let y=vxy = vx, so dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}. Substitute into the equation:

v+xdvdx=x2+(vx)25x(vx).v + x\frac{dv}{dx} = \frac{x^2 + (vx)^2}{5x(vx)}.

Simplify:

v+xdvdx=1+v25v.v + x\frac{dv}{dx} = \frac{1 + v^2}{5v}.

Simplify further:

xdvdx=1+v25vv.x\frac{dv}{dx} = \frac{1 + v^2}{5v} - v.

xdvdx=1+v25v25v.x\frac{dv}{dx} = \frac{1 + v^2 - 5v^2}{5v}.

xdvdx=14v25v.x\frac{dv}{dx} = \frac{1 - 4v^2}{5v}.

Step 3: Separate variables

vdv=dx5x(14v2).v\,dv = \frac{dx}{5x(1 - 4v^2)}.

Step 4: Solve the integral

Let 14v2=t1 - 4v^2 = t, so 8vdv=dt-8v\,dv = dt. The left-hand side becomes:

vdv14v2=dx5x.\int \frac{v\,dv}{1 - 4v^2} = \int \frac{dx}{5x}.

Integrate both sides:

18lnt=15lnx+lnC.-\frac{1}{8} \ln|t| = \frac{1}{5} \ln|x| + \ln C.

Substitute t=14v2t = 1 - 4v^2:

18ln14v2=15lnx+lnC.-\frac{1}{8} \ln|1 - 4v^2| = \frac{1}{5} \ln|x| + \ln C.

Simplify:

lnx8+ln14v25=lnC.\ln|x^8| + \ln|1 - 4v^2|^5 = \ln C.

x814v25=C.x^8 |1 - 4v^2|^5 = C.

Step 5: Substitute back v=yxv = \frac{y}{x}

x814(yx)25=C.x^8 |1 - 4\left(\frac{y}{x}\right)^2|^5 = C.

x24y25=Cx2.|x^2 - 4y^2|^5 = Cx^2.

Step 6: Apply the initial condition

Given y(1)=0y(1) = 0:

124(0)25=C(12).|1^2 - 4(0)^2|^5 = C(1^2).

C=1.C = 1.

Thus, the solution is:

x24y25=x2.|x^2 - 4y^2|^5 = x^2.

Final Answer: Option (1).