Question
Mathematics Question on Differential equations
The solution of the differential equation (x2+y2)dx−5xydy=0,y(1)=0, is:
A
∣x2−4y2∣5=x2
B
∣x2−2y2∣6=x
C
∣x2−4y2∣6=x
D
∣x2−2y2∣5=x2
Answer
∣x2−4y2∣5=x2
Explanation
Solution
The given differential equation is:
(x2+y2)dx−5xydy=0.
Step 1: Rewrite in terms of dxdy
dxdy=5xyx2+y2.
Step 2: Substitution
Let y=vx, so dxdy=v+xdxdv. Substitute into the equation:
v+xdxdv=5x(vx)x2+(vx)2.
Simplify:
v+xdxdv=5v1+v2.
Simplify further:
xdxdv=5v1+v2−v.
xdxdv=5v1+v2−5v2.
xdxdv=5v1−4v2.
Step 3: Separate variables
vdv=5x(1−4v2)dx.
Step 4: Solve the integral
Let 1−4v2=t, so −8vdv=dt. The left-hand side becomes:
∫1−4v2vdv=∫5xdx.
Integrate both sides:
−81ln∣t∣=51ln∣x∣+lnC.
Substitute t=1−4v2:
−81ln∣1−4v2∣=51ln∣x∣+lnC.
Simplify:
ln∣x8∣+ln∣1−4v2∣5=lnC.
x8∣1−4v2∣5=C.
Step 5: Substitute back v=xy
x8∣1−4(xy)2∣5=C.
∣x2−4y2∣5=Cx2.
Step 6: Apply the initial condition
Given y(1)=0:
∣12−4(0)2∣5=C(12).
C=1.
Thus, the solution is:
∣x2−4y2∣5=x2.
Final Answer: Option (1).