Solveeit Logo

Question

Question: The solution of the differential equation $(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^2$ is...

The solution of the differential equation (x+1)dydxy=e3x(x+1)2(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^2 is

A

y = (x + 1)e^{3x} + C

B

3y = (x + 1) + e^{3x} + C

C

\frac{3y}{x+1} = e^{3x} + C

D

ye^{-3x} = 3(x + 1) + C

Answer

\frac{3y}{x+1} = e^{3x} + C

Explanation

Solution

The given differential equation is (x+1)dydxy=e3x(x+1)2(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^2. This is a first-order linear differential equation. We rewrite it in the standard form: dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x).

Divide the entire equation by (x+1)(x+1): dydx1x+1y=e3x(x+1)\frac{dy}{dx} - \frac{1}{x+1} y = e^{3x} (x + 1)

Comparing with the standard form: P(x)=1x+1P(x) = -\frac{1}{x+1} Q(x)=e3x(x+1)Q(x) = e^{3x} (x + 1)

The integrating factor (IF) is IF=eP(x)dxIF = e^{\int P(x) dx}. IF=e1x+1dx=elnx+1=1x+1IF = e^{\int -\frac{1}{x+1} dx} = e^{-\ln|x+1|} = \frac{1}{x+1}.

The general solution is y×IF=Q(x)×IFdx+Cy \times IF = \int Q(x) \times IF \, dx + C. y×1x+1=e3x(x+1)×1x+1dx+Cy \times \frac{1}{x+1} = \int e^{3x} (x + 1) \times \frac{1}{x+1} \, dx + C yx+1=e3xdx+C\frac{y}{x+1} = \int e^{3x} \, dx + C e3xdx=e3x3\int e^{3x} \, dx = \frac{e^{3x}}{3}

So, the solution is: yx+1=e3x3+Cinitial\frac{y}{x+1} = \frac{e^{3x}}{3} + C_{initial} Multiply both sides by 3: 3yx+1=e3x+3Cinitial\frac{3y}{x+1} = e^{3x} + 3C_{initial} Let C=3CinitialC = 3C_{initial}. Thus, the general solution is: 3yx+1=e3x+C\frac{3y}{x+1} = e^{3x} + C