Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation log x dydx+yx=\frac{d y}{d x}+\frac{y}{x} = sin 2x is

A

ylogx=C12cosxy log \left|x\right| =C-\frac{1}{2} cos\, x

B

ylogx=C+12cos2xy log \left|x\right| =C+\frac{1}{2} cos\, 2 x

C

ylogx=C12cos2xy log \left|x\right| =C-\frac{1}{2} cos\, 2 x

D

xylogx=C12cos2xxy log \left|x\right| =C-\frac{1}{2} cos\, 2 x

Answer

ylogx=C12cos2xy log \left|x\right| =C-\frac{1}{2} cos\, 2 x

Explanation

Solution

dydx+yxlogx=sin2xlogx\frac{d y}{d x}+\frac{y}{x \, log\, x }=\frac{sin \, 2x}{log\, x} I.F.=edxxlogxI.F. =e^{\int \frac{d x}{x \, log \, x}} I.F.=e1tdt=elogt=t=logx\therefore\quad I.F. = e^{\int \frac{1}{t} dt}=e^{log\, t} =t=log \left|x\right| solution is given by y(I.F.)=(I.F.)dx+Cy \left(I.F.\right)=\int \left(I.F.\right) dx+C ylogx=sin2xlogx(logx)dx+Cy log \left|x\right|= \int \frac{sin\, 2x}{log\, \left|x\right|} \left(log \left|x\right|\right) dx+C =cos2x2+C=-\frac{cos\, 2x}{2}+C