Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The Solution of the differential equation (x+2y3)dydx=y\left(x+2y^{3}\right) \frac{dy}{dx}=y is

A

y3+Cy=xy^{3}+Cy=x

B

x+2y3=y+Cx+2y^{3}=y+C

C

y3+Cx=yy^{3}+Cx=y

D

xy42+xy=Cy\frac{xy^{4}}{2}+xy=Cy

Answer

y3+Cy=xy^{3}+Cy=x

Explanation

Solution

Given, (x+2y3)dydx=y\left(x+2 y^{3}\right) \frac{d y}{d x}=y
ydxdy=x+2y3\Rightarrow y \frac{d x}{d y}=x+2 y^{3}
dxdy1yx=2y2\Rightarrow \frac{d x}{d y}-\frac{1}{y} x=2 y^{2}
This is of the form dxdy+Px=Q\frac{d x}{d y}+P x=Q.
where, P=1yP=-\frac{1}{y} and Q=2y2Q=2 y^{2}
Thus, the given equation is linear.
IF=ePdy=e1ydy=elogy=elog(y)1=y1=1y\therefore IF = e ^{\int Pdy }= e ^{\int-\frac{1}{y} d y}= e ^{-\log y}= e ^{\log (y)^{-1}}= y ^{-1}=\frac{1}{ y }
So, the required solution is
xIF=(QF)dy+Cx \cdot I F =\int(Q \cdot \mid F) d y +C
x1y=(2y21y)dy+C\Rightarrow x \cdot \frac{1}{y} =\int\left(2 y^{2} \cdot \frac{1}{y}\right) d y +C
x1y=2ydy+C=y2+C\Rightarrow x \cdot \frac{1}{y} =\int 2 y d y +C=y^{2}+C
x=y3+Cy\Rightarrow x =y^{3}+ C y