Question
Mathematics Question on General and Particular Solutions of a Differential Equation
The Solution of the differential equation (x+2y3)dxdy=y is
A
y3+Cy=x
B
x+2y3=y+C
C
y3+Cx=y
D
2xy4+xy=Cy
Answer
y3+Cy=x
Explanation
Solution
Given, (x+2y3)dxdy=y
⇒ydydx=x+2y3
⇒dydx−y1x=2y2
This is of the form dydx+Px=Q.
where, P=−y1 and Q=2y2
Thus, the given equation is linear.
∴IF=e∫Pdy=e∫−y1dy=e−logy=elog(y)−1=y−1=y1
So, the required solution is
x⋅IF=∫(Q⋅∣F)dy+C
⇒x⋅y1=∫(2y2⋅y1)dy+C
⇒x⋅y1=∫2ydy+C=y2+C
⇒x=y3+Cy