Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = \left( a e ^ { b x } + c \cos m...

The solution of the differential equation

dydx=(aebx+ccosmx)\frac { d y } { d x } = \left( a e ^ { b x } + c \cos m x \right) is

A

y=aexb+cmsinmx+ky = \frac { a e ^ { x } } { b } + \frac { c } { m } \sin m x + k

B

y=aex+csinmx+ky = a e ^ { x } + c \sin m x + k

C

y=aebxb+cmsinmx+ky = \frac { a e ^ { b x } } { b } + \frac { c } { m } \sin m x + k

D

None of these

Answer

y=aebxb+cmsinmx+ky = \frac { a e ^ { b x } } { b } + \frac { c } { m } \sin m x + k

Explanation

Solution

dydx=(aebx+ccosmx)\frac { d y } { d x } = \left( a e ^ { b x } + c \cos m x \right)dy=(aebx+ccosmx)dxd y = \left( a e ^ { b x } + c \cos m x \right) d x

On integrating, y=aebxb+csin(mx)m+ky = \frac { a e ^ { b x } } { b } + \frac { c \sin ( m x ) } { m } + k