Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = 1 + x + y + x y\) is...

The solution of the differential equation dydx=1+x+y+xy\frac { d y } { d x } = 1 + x + y + x y is

A

log(1+y)=x+x22+c\log ( 1 + y ) = x + \frac { x ^ { 2 } } { 2 } + c

B

(1+y)2=x+x22+c( 1 + y ) ^ { 2 } = x + \frac { x ^ { 2 } } { 2 } + c

C

log(1+y)=log(1+x)+c\log ( 1 + y ) = \log ( 1 + x ) + c

D

None of these

Answer

log(1+y)=x+x22+c\log ( 1 + y ) = x + \frac { x ^ { 2 } } { 2 } + c

Explanation

Solution

dydx=1+x+y+xy\frac { d y } { d x } = 1 + x + y + x y

dydx=(1+x)(1+y)\frac { d y } { d x } = ( 1 + x ) ( 1 + y )dy1+y=(1+x)dx\frac { d y } { 1 + y } = ( 1 + x ) d x

On integrating, we get log(1+y)=x22+x+c\log ( 1 + y ) = \frac { x ^ { 2 } } { 2 } + x + c.