Solveeit Logo

Question

Question: The solution of the differential equation \(\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = x\)...

The solution of the differential equation (1+x2)dydx=x\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = x is

A

y=tan1x+cy = \tan ^ { - 1 } x + c

B

y=tan1x+cy = - \tan ^ { - 1 } x + c

C

y=12loge(1+x2)+cy = \frac { 1 } { 2 } \log _ { e } \left( 1 + x ^ { 2 } \right) + c

D

y=12loge(1+x2)+cy = - \frac { 1 } { 2 } \log _ { e } \left( 1 + x ^ { 2 } \right) + c

Answer

y=12loge(1+x2)+cy = \frac { 1 } { 2 } \log _ { e } \left( 1 + x ^ { 2 } \right) + c

Explanation

Solution

(1+x2)dydx=x\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = xdy=x1+x2dxd y = \frac { x } { 1 + x ^ { 2 } } d x

dy=x1+x2dx+c\int d y = \int \frac { x } { 1 + x ^ { 2 } } d x + cy=12loge(1+x2)+cy = \frac { 1 } { 2 } \log _ { e } \left( 1 + x ^ { 2 } \right) + c .