Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } + \frac { 1 + x ^ { 2 } } { x } = ...

The solution of the differential equation dydx+1+x2x=0\frac { d y } { d x } + \frac { 1 + x ^ { 2 } } { x } = 0 is

A

y=12tan1x+cy = - \frac { 1 } { 2 } \tan ^ { - 1 } x + c

B

y+logx+x22+c=0y + \log x + \frac { x ^ { 2 } } { 2 } + c = 0

C

y=12tan1x+cy = \frac { 1 } { 2 } \tan ^ { - 1 } x + c

D

ylogxx22=cy - \log x - \frac { x ^ { 2 } } { 2 } = c

Answer

y+logx+x22+c=0y + \log x + \frac { x ^ { 2 } } { 2 } + c = 0

Explanation

Solution

dydx+1+x2x=0\frac { d y } { d x } + \frac { 1 + x ^ { 2 } } { x } = 0dy+(1x+x)dx=0d y + \left( \frac { 1 } { x } + x \right) d x = 0

On integrating, we get y+logx+x22+c=0y + \log x + \frac { x ^ { 2 } } { 2 } + c = 0 .