Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = \sec x ( \sec x + \tan x )\)is...

The solution of the differential equation

dydx=secx(secx+tanx)\frac { d y } { d x } = \sec x ( \sec x + \tan x )is

A

y=secx+tanx+cy = \sec x + \tan x + c

B

y=secx+cotx+cy = \sec x + \cot x + c

C

y=secxtanx+cy = \sec x - \tan x + c

D

None of these

Answer

y=secx+tanx+cy = \sec x + \tan x + c

Explanation

Solution

dydx=secx(secx+tanx)\frac { d y } { d x } = \sec x ( \sec x + \tan x )dydx=sec2x+secxtanx\frac { d y } { d x } = \sec ^ { 2 } x + \sec x \tan x

Now integrating both sides, we get

y=tanx+secx+cy = \tan x + \sec x + c.