Solveeit Logo

Question

Question: The solution of the differential equation \(x \cos y d y = \left( x e ^ { x } \log x + e ^ { x } \r...

The solution of the differential equation

xcosydy=(xexlogx+ex)dxx \cos y d y = \left( x e ^ { x } \log x + e ^ { x } \right) d x is

A

siny=1xex+c\sin y = \frac { 1 } { x } e ^ { x } + c

B

siny+exlogx+c=0\sin y + e ^ { x } \log x + c = 0

C

siny=exlogx+c\sin y = e ^ { x } \log x + c

D

None of these

Answer

siny=exlogx+c\sin y = e ^ { x } \log x + c

Explanation

Solution

xcosydy=(xexlogx+ex)dxx \cos y d y = \left( x e ^ { x } \log x + e ^ { x } \right) d x

cosydy=(exlogx+exx)dx\cos y d y = \left( e ^ { x } \log x + \frac { e ^ { x } } { x } \right) d x

On integrating, siny=exlogx+c\sin y = e ^ { x } \log x + c.