Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = \frac { 1 + y ^ { 2 } } { 1 + x ...

The solution of the differential equation dydx=1+y21+x2\frac { d y } { d x } = \frac { 1 + y ^ { 2 } } { 1 + x ^ { 2 } } is

A

1+xy+c(y+x)=01 + x y + c ( y + x ) = 0

B

x+y=c(1xy)x + y = c ( 1 - x y )

C

yx=c(1+xy)y - x = c ( 1 + x y )

D

1+xy=c(x+y)1 + x y = c ( x + y )

Answer

yx=c(1+xy)y - x = c ( 1 + x y )

Explanation

Solution

dydx=1+y21+x211+y2dy=11+x2dx\frac { d y } { d x } = \frac { 1 + y ^ { 2 } } { 1 + x ^ { 2 } } \Rightarrow \frac { 1 } { 1 + y ^ { 2 } } d y = \frac { 1 } { 1 + x ^ { 2 } } d x

Now on integrating both sides, we get

tan1y=tan1x+tan1c\tan ^ { - 1 } y = \tan ^ { - 1 } x + \tan ^ { - 1 } ctan1y=tan1(x+c1cx)\tan ^ { - 1 } y = \tan ^ { - 1 } \left( \frac { x + c } { 1 - c x } \right)

y=x+c1cxy = \frac { x + c } { 1 - c x }yx=c(1+xy)y - x = c ( 1 + x y ) .