Question
Question: The solution of the differential equation \(\frac { d y } { d x } = \frac { 1 + y ^ { 2 } } { 1 + x ...
The solution of the differential equation dxdy=1+x21+y2 is
A
1+xy+c(y+x)=0
B
x+y=c(1−xy)
C
y−x=c(1+xy)
D
1+xy=c(x+y)
Answer
y−x=c(1+xy)
Explanation
Solution
dxdy=1+x21+y2⇒1+y21dy=1+x21dx
Now on integrating both sides, we get
tan−1y=tan−1x+tan−1c⇒ tan−1y=tan−1(1−cxx+c)
⇒ y=1−cxx+c ⇒ y−x=c(1+xy) .