Question
Question: The solution of the differential equation \(3 e ^ { x } \tan y d x + \left( 1 - e ^ { x } \right) \...
The solution of the differential equation
3extanydx+(1−ex)sec2ydy=0 is
A
tany=c(1−ex)3
B
(1−ex)3tany=c
C
tany=c(1−ex)
D
(1−ex)tany=c
Answer
tany=c(1−ex)3
Explanation
Solution
It can be written in the form of
tanysec2ydy=−31−exexdx
∫tanysec2ydy=−3∫1−exexdx
⇒ log(tany)=3log(1−ex)+logc ⇒ tany=c(1−ex)3.