Solveeit Logo

Question

Question: The solution of the differential equation \(3 e ^ { x } \tan y d x + \left( 1 - e ^ { x } \right) \...

The solution of the differential equation

3extanydx+(1ex)sec2ydy=03 e ^ { x } \tan y d x + \left( 1 - e ^ { x } \right) \sec ^ { 2 } y d y = 0 is

A

tany=c(1ex)3\tan y = c \left( 1 - e ^ { x } \right) ^ { 3 }

B

(1ex)3tany=c\left( 1 - e ^ { x } \right) ^ { 3 } \tan y = c

C

tany=c(1ex)\tan y = c \left( 1 - e ^ { x } \right)

D

(1ex)tany=c\left( 1 - e ^ { x } \right) \tan y = c

Answer

tany=c(1ex)3\tan y = c \left( 1 - e ^ { x } \right) ^ { 3 }

Explanation

Solution

It can be written in the form of

sec2ytanydy=3ex1exdx\frac { \sec ^ { 2 } y } { \tan y } d y = - 3 \frac { e ^ { x } } { 1 - e ^ { x } } d x

sec2ytanydy=3ex1exdx\int \frac { \sec ^ { 2 } y } { \tan y } d y = - 3 \int \frac { e ^ { x } } { 1 - e ^ { x } } d x

log(tany)=3log(1ex)+logc\log ( \tan y ) = 3 \log \left( 1 - e ^ { x } \right) + \log ctany=c(1ex)3\tan y = c \left( 1 - e ^ { x } \right) ^ { 3 }.