Solveeit Logo

Question

Question: The solution of the differential equation \(\left( 1 + x ^ { 2 } \right) ( 1 + y ) d y + ( 1 + x ) ...

The solution of the differential equation

(1+x2)(1+y)dy+(1+x)(1+y2)dx=0\left( 1 + x ^ { 2 } \right) ( 1 + y ) d y + ( 1 + x ) \left( 1 + y ^ { 2 } \right) d x = 0 is

A

tan1x+log(1+x2)+tan1y+log(1+y2)=c\tan ^ { - 1 } x + \log \left( 1 + x ^ { 2 } \right) + \tan ^ { - 1 } y + \log \left( 1 + y ^ { 2 } \right) = c

B

tan1x12log(1+x2)+tan1y12log(1+y2)=c\tan ^ { - 1 } x - \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + \tan ^ { - 1 } y - \frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = c

C

tan1x+12log(1+x2)+tan1y+12log(1+y2)=c\tan ^ { - 1 } x + \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + \tan ^ { - 1 } y + \frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = c

D

None of these

Answer

tan1x+12log(1+x2)+tan1y+12log(1+y2)=c\tan ^ { - 1 } x + \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + \tan ^ { - 1 } y + \frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) = c

Explanation

Solution

Given equation

(1+x2)(1+y)dy+(1+x)(1+y2)dx=0\left( 1 + x ^ { 2 } \right) ( 1 + y ) d y + ( 1 + x ) \left( 1 + y ^ { 2 } \right) d x = 0

(1+y)(1+y2)dy=(1+x)(1+x2)dx\frac { ( 1 + y ) } { \left( 1 + y ^ { 2 } \right) } d y = - \frac { ( 1 + x ) } { \left( 1 + x ^ { 2 } \right) } d x

[11+y2+y1+y2]dy+[11+x2+x1+x2]dx+c=0\int \left[ \frac { 1 } { 1 + y ^ { 2 } } + \frac { y } { 1 + y ^ { 2 } } \right] d y + \int \left[ \frac { 1 } { 1 + x ^ { 2 } } + \frac { x } { 1 + x ^ { 2 } } \right] d x + c = 0

tan1y+12log(1+y2)+tan1x+12log(1+x2)=c\tan ^ { - 1 } y + \frac { 1 } { 2 } \log \left( 1 + y ^ { 2 } \right) + \tan ^ { - 1 } x + \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) = c.