Question
Question: The solution of the differential equation \(\left( 1 + x ^ { 2 } \right) ( 1 + y ) d y + ( 1 + x ) ...
The solution of the differential equation
(1+x2)(1+y)dy+(1+x)(1+y2)dx=0 is
A
tan−1x+log(1+x2)+tan−1y+log(1+y2)=c
B
tan−1x−21log(1+x2)+tan−1y−21log(1+y2)=c
C
tan−1x+21log(1+x2)+tan−1y+21log(1+y2)=c
D
None of these
Answer
tan−1x+21log(1+x2)+tan−1y+21log(1+y2)=c
Explanation
Solution
Given equation
(1+x2)(1+y)dy+(1+x)(1+y2)dx=0
⇒ (1+y2)(1+y)dy=−(1+x2)(1+x)dx
⇒ ∫[1+y21+1+y2y]dy+∫[1+x21+1+x2x]dx+c=0
⇒ tan−1y+21log(1+y2)+tan−1x+21log(1+x2)=c.