Question
Question: The solution of the differential equation \(\left( 1 - x ^ { 2 } \right) ( 1 - y ) d x = x y ( 1 + ...
The solution of the differential equation
(1−x2)(1−y)dx=xy(1+y)dy is
A
log[x(1−y)2]=2x2+2y2−2y+c
B
log[x(1−y)2]=2x2−2y2+2y+c
C
log[x(1+y)2]=2x2+2y2+2y+c
D
log[x(1−y)2]=2x2−2y2−2y+c
Answer
log[x(1−y)2]=2x2−2y2−2y+c
Explanation
Solution
(1−x2)(1−y)dx=xy(1+y)dy
⇒ ∫(1−y)y(1+y)dy=∫x(1−x2)dx;
Now integrate it