Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = \frac { x - y + 3 } { 2 ( x - y...

The solution of the differential equation

dydx=xy+32(xy)+5\frac { d y } { d x } = \frac { x - y + 3 } { 2 ( x - y ) + 5 } is

A

2(xy)+log(xy)=x+c2 ( x - y ) + \log ( x - y ) = x + c

B

2(xy)log(xy+2)=x+c2 ( x - y ) - \log ( x - y + 2 ) = x + c

C

2(xy)+log(xy+2)=x+c2 ( x - y ) + \log ( x - y + 2 ) = x + c

D

None of these

Answer

2(xy)+log(xy+2)=x+c2 ( x - y ) + \log ( x - y + 2 ) = x + c

Explanation

Solution

Let xy=vx - y = vand dydx=1dvdx\frac { d y } { d x } = 1 - \frac { d v } { d x } thus the equation reduces to dvdx=v+22v+5\frac { d v } { d x } = \frac { v + 2 } { 2 v + 5 }2v+5v+2dv=dx\int \frac { 2 v + 5 } { v + 2 } d v = \int d x

[2+1(v+2)]dv=dx\int \left[ 2 + \frac { 1 } { ( v + 2 ) } \right] d v = \int d x2v+log(v+2)=x+c2 v + \log ( v + 2 ) = x + c

or 2(xy)+log(xy+2)=x+c2 ( x - y ) + \log ( x - y + 2 ) = x + c .