Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } + \frac { 1 + \cos 2 y } { 1 - \c...

The solution of the differential equation

dydx+1+cos2y1cos2x=0\frac { d y } { d x } + \frac { 1 + \cos 2 y } { 1 - \cos 2 x } = 0

A

tany+cotx=c\tan y + \cot x = c

B

tanycotx=c\tan y \cot x = c

C

tanycotx=c\tan y - \cot x = c

D

None of these

Answer

tanycotx=c\tan y - \cot x = c

Explanation

Solution

dydx=1+cos2y1cos2x\frac { d y } { d x } = - \frac { 1 + \cos 2 y } { 1 - \cos 2 x }dydx=2cos2y2sin2x\frac { d y } { d x } = - \frac { 2 \cos ^ { 2 } y } { 2 \sin ^ { 2 } x }

sec2ydy=cosec2xdx\sec ^ { 2 } y d y = - \operatorname { cosec } ^ { 2 } x d x

On integrating both sides, we get

tany=cotx+c\tan y = \cot x + ctanycotx=c\tan y - \cot x = c.