Solveeit Logo

Question

Question: The solution of the differential equation \(( 1 + \cos x ) d y = ( 1 - \cos x ) d x\)is...

The solution of the differential equation

(1+cosx)dy=(1cosx)dx( 1 + \cos x ) d y = ( 1 - \cos x ) d xis

A

y=2tanx2x+cy = 2 \tan \frac { x } { 2 } - x + c

B

y=2tanx+x+cy = 2 \tan x + x + c

C

y=2tanx2+x+cy = 2 \tan \frac { x } { 2 } + x + c

D

y=x2tanx2+cy = x - 2 \tan \frac { x } { 2 } + c

Answer

y=2tanx2x+cy = 2 \tan \frac { x } { 2 } - x + c

Explanation

Solution

Here dydx=1cosx1+cosx=tan2x2\frac { d y } { d x } = \frac { 1 - \cos x } { 1 + \cos x } = \tan ^ { 2 } \frac { x } { 2 }

dy=(sec2x21)dxd y = \left( \sec ^ { 2 } \frac { x } { 2 } - 1 \right) d x

Now on integrating both the sides, we get y=2tanx2x+cy = 2 \tan \frac { x } { 2 } - x + c.