Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = ( 1 + x ) \left( 1 + y ^ { 2 } ...

The solution of the differential equation

dydx=(1+x)(1+y2)\frac { d y } { d x } = ( 1 + x ) \left( 1 + y ^ { 2 } \right) is

A

y=tan(x2+x+c)y = \tan \left( x ^ { 2 } + x + c \right)

B

y=tan(2x2+x+c)y = \tan \left( 2 x ^ { 2 } + x + c \right)

C

y=tan(x2x+c)y = \tan \left( x ^ { 2 } - x + c \right)

D

y=tan(x22+x+c)y = \tan \left( \frac { x ^ { 2 } } { 2 } + x + c \right)

Answer

y=tan(x22+x+c)y = \tan \left( \frac { x ^ { 2 } } { 2 } + x + c \right)

Explanation

Solution

dydx=(1+x)(1+y2)\frac { d y } { d x } = ( 1 + x ) \left( 1 + y ^ { 2 } \right)dy1+y2=(1+x)dx\frac { d y } { 1 + y ^ { 2 } } = ( 1 + x ) d x

On integrating both sides, we get

tan1y=x22+x+c\tan ^ { - 1 } y = \frac { x ^ { 2 } } { 2 } + x + cy=tan(x22+x+c)y = \tan \left( \frac { x ^ { 2 } } { 2 } + x + c \right).