Solveeit Logo

Question

Question: The solution of the differential equation \(( \sin x + \cos x ) d y + ( \cos x - \sin x ) d x = 0\)...

The solution of the differential equation

(sinx+cosx)dy+(cosxsinx)dx=0( \sin x + \cos x ) d y + ( \cos x - \sin x ) d x = 0is

A

ex(sinx+cosx)+c=0e ^ { x } ( \sin x + \cos x ) + c = 0

B

ey(sinx+cosx)=ce ^ { y } ( \sin x + \cos x ) = c

C

ey(cosxsinx)=ce ^ { y } ( \cos x - \sin x ) = c

D

ex(sinxcosx)=ce ^ { x } ( \sin x - \cos x ) = c

Answer

ey(sinx+cosx)=ce ^ { y } ( \sin x + \cos x ) = c

Explanation

Solution

dydx=cosxsinxsinx+cosx\frac { d y } { d x } = - \frac { \cos x - \sin x } { \sin x + \cos x }dy=(cosxsinxsinx+cosx)dxd y = - \left( \frac { \cos x - \sin x } { \sin x + \cos x } \right) d x

On integrating both sides, we get

y=log(sinx+cosx)+logcy = - \log ( \sin x + \cos x ) + \log c

y=log(csinx+cosx)y = \log \left( \frac { c } { \sin x + \cos x } \right)ey(sinx+cosx)=ce ^ { y } ( \sin x + \cos x ) = c.