Solveeit Logo

Question

Question: The solution of the differential equation $\frac{dy}{dx} = \tan(\frac{y}{x}) + (\frac{y}{x})$ is...

The solution of the differential equation dydx=tan(yx)+(yx)\frac{dy}{dx} = \tan(\frac{y}{x}) + (\frac{y}{x}) is

A

cos(yx)=cx\cos(\frac{y}{x}) = cx

B

sin(yx)=cx\sin(\frac{y}{x}) = cx

C

cos(yx)=cy\cos(\frac{y}{x}) = cy

D

sin(yx)=cy\sin(\frac{y}{x}) = cy

Answer

sin(yx)=cx\sin(\frac{y}{x}) = cx

Explanation

Solution

The given differential equation is: dydx=tan(yx)+(yx)\frac{dy}{dx} = \tan\left(\frac{y}{x}\right) + \left(\frac{y}{x}\right)

This is a homogeneous differential equation because it can be expressed in the form dydx=f(yx)\frac{dy}{dx} = f\left(\frac{y}{x}\right).

To solve homogeneous differential equations, we use the substitution y=vxy = vx. Differentiating both sides with respect to xx, we get: dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}

Substitute y=vxy = vx and dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx} into the original differential equation: v+xdvdx=tan(vxx)+(vxx)v + x\frac{dv}{dx} = \tan\left(\frac{vx}{x}\right) + \left(\frac{vx}{x}\right) v+xdvdx=tan(v)+vv + x\frac{dv}{dx} = \tan(v) + v

Subtract vv from both sides: xdvdx=tan(v)x\frac{dv}{dx} = \tan(v)

This is a separable differential equation. Separate the variables vv and xx: dvtan(v)=dxx\frac{dv}{\tan(v)} = \frac{dx}{x} cot(v)dv=dxx\cot(v) dv = \frac{dx}{x}

Now, integrate both sides: cot(v)dv=dxx\int \cot(v) dv = \int \frac{dx}{x}

The integral of cot(v)\cot(v) is lnsin(v)\ln|\sin(v)|, and the integral of 1x\frac{1}{x} is lnx\ln|x|. We add a constant of integration, which can be written as lnC\ln|C| for convenience: lnsin(v)=lnx+lnC\ln|\sin(v)| = \ln|x| + \ln|C|

Using the logarithm property lna+lnb=ln(ab)\ln a + \ln b = \ln(ab): lnsin(v)=lnCx\ln|\sin(v)| = \ln|Cx|

Exponentiate both sides to remove the logarithm: sin(v)=Cx|\sin(v)| = |Cx|

Since CC is an arbitrary constant, it can absorb the signs, so we can write: sin(v)=Cx\sin(v) = Cx

Finally, substitute back v=yxv = \frac{y}{x}: sin(yx)=Cx\sin\left(\frac{y}{x}\right) = Cx