Solveeit Logo

Question

Question: The solution of the differential equation $\frac{dy}{dx}+x(2x+y)=x^{2}(2x+y)^{3}-2$ is (C being an a...

The solution of the differential equation dydx+x(2x+y)=x2(2x+y)32\frac{dy}{dx}+x(2x+y)=x^{2}(2x+y)^{3}-2 is (C being an arbitrary constant)

Answer

ex2(2x+y)2xex2+ex2dx=C\frac{e^{-x^2}}{(2x+y)^2} - x e^{-x^2} + \int e^{-x^2} dx = C

Explanation

Solution

Let the given differential equation be dydx+x(2x+y)=x2(2x+y)32\frac{dy}{dx}+x(2x+y)=x^{2}(2x+y)^{3}-2 Rearrange the terms: dydx+2+x(2x+y)=x2(2x+y)3\frac{dy}{dx} + 2 + x(2x+y) = x^2(2x+y)^3 Let v=2x+yv = 2x+y. Then dvdx=d(2x+y)dx=2+dydx\frac{dv}{dx} = \frac{d(2x+y)}{dx} = 2 + \frac{dy}{dx}. Substituting vv and dvdx\frac{dv}{dx} into the equation: (dvdx2)+2+xv=x2v3\left(\frac{dv}{dx} - 2\right) + 2 + xv = x^2 v^3 dvdx+xv=x2v3\frac{dv}{dx} + xv = x^2 v^3 This is a Bernoulli differential equation of the form dvdx+P(x)v=Q(x)vn\frac{dv}{dx} + P(x)v = Q(x)v^n, with P(x)=xP(x) = x, Q(x)=x2Q(x) = x^2, and n=3n=3. To solve this, divide by v3v^3: v3dvdx+xv2=x2v^{-3} \frac{dv}{dx} + xv^{-2} = x^2 Let z=v1n=v13=v2z = v^{1-n} = v^{1-3} = v^{-2}. Then dzdx=2v3dvdx\frac{dz}{dx} = -2v^{-3} \frac{dv}{dx}. So, v3dvdx=12dzdxv^{-3} \frac{dv}{dx} = -\frac{1}{2} \frac{dz}{dx}. Substitute this into the equation: 12dzdx+xz=x2-\frac{1}{2} \frac{dz}{dx} + xz = x^2 Multiply by -2 to get the standard linear form: dzdx2xz=2x2\frac{dz}{dx} - 2xz = -2x^2 This is a first-order linear differential equation of the form dzdx+P(x)z=Q(x)\frac{dz}{dx} + P'(x)z = Q'(x), with P(x)=2xP'(x) = -2x and Q(x)=2x2Q'(x) = -2x^2. The integrating factor (I.F.) is eP(x)dx=e2xdx=ex2e^{\int P'(x) dx} = e^{\int -2x dx} = e^{-x^2}. Multiply the linear equation by the integrating factor: ex2dzdx2xex2z=2x2ex2e^{-x^2} \frac{dz}{dx} - 2xe^{-x^2} z = -2x^2 e^{-x^2} The left side is the derivative of the product zex2z e^{-x^2}: ddx(zex2)=2x2ex2\frac{d}{dx}(z e^{-x^2}) = -2x^2 e^{-x^2} Integrate both sides with respect to xx: ddx(zex2)dx=2x2ex2dx\int \frac{d}{dx}(z e^{-x^2}) dx = \int -2x^2 e^{-x^2} dx zex2=2x2ex2dxz e^{-x^2} = \int -2x^2 e^{-x^2} dx To evaluate the integral on the right side, we use integration by parts. Let I=2x2ex2dxI = \int -2x^2 e^{-x^2} dx. Let u=xu = x and dv=2xex2dxdv = -2x e^{-x^2} dx. Then du=dxdu = dx. To find vv, integrate dvdv: v=2xex2dxv = \int -2x e^{-x^2} dx. Let w=x2w = -x^2, so dw=2xdxdw = -2x dx. v=ewdw=ew=ex2v = \int e^w dw = e^w = e^{-x^2}. Using the integration by parts formula udv=uvvdu\int u dv = uv - \int v du: I=x(ex2)ex2dxI = x (e^{-x^2}) - \int e^{-x^2} dx So, the equation becomes: zex2=xex2ex2dx+Cz e^{-x^2} = x e^{-x^2} - \int e^{-x^2} dx + C where C is the arbitrary constant of integration. Substitute back z=v2=(2x+y)2z = v^{-2} = (2x+y)^{-2}: (2x+y)2ex2=xex2ex2dx+C(2x+y)^{-2} e^{-x^2} = x e^{-x^2} - \int e^{-x^2} dx + C Multiply by ex2e^{x^2}: (2x+y)2=x+Cex2ex2ex2dx(2x+y)^{-2} = x + C e^{x^2} - e^{x^2} \int e^{-x^2} dx This does not seem to match standard forms or lead to a simple solution without the integral of ex2e^{-x^2}.

Let's re-examine the integral 2x2ex2dx\int -2x^2 e^{-x^2} dx. Consider the derivative of xex2x e^{-x^2}: ddx(xex2)=1ex2+x(2xex2)=ex22x2ex2\frac{d}{dx}(x e^{-x^2}) = 1 \cdot e^{-x^2} + x \cdot (-2x e^{-x^2}) = e^{-x^2} - 2x^2 e^{-x^2}. So, 2x2ex2=ddx(xex2)ex2-2x^2 e^{-x^2} = \frac{d}{dx}(x e^{-x^2}) - e^{-x^2}. Integrating both sides: 2x2ex2dx=(ddx(xex2)ex2)dx=xex2ex2dx\int -2x^2 e^{-x^2} dx = \int \left(\frac{d}{dx}(x e^{-x^2}) - e^{-x^2}\right) dx = x e^{-x^2} - \int e^{-x^2} dx. This is the same result.

Let's go back to zex2=xex2ex2dx+Cz e^{-x^2} = x e^{-x^2} - \int e^{-x^2} dx + C. Divide by ex2e^{-x^2}: z=xex2ex2dx+Cex2z = x - e^{x^2} \int e^{-x^2} dx + C e^{x^2}. Substitute z=(2x+y)2z = (2x+y)^{-2}: (2x+y)2=xex2ex2dx+Cex2(2x+y)^{-2} = x - e^{x^2} \int e^{-x^2} dx + C e^{x^2}. 1(2x+y)2=x+ex2(Cex2dx)\frac{1}{(2x+y)^2} = x + e^{x^2} (C - \int e^{-x^2} dx).

Let's rewrite the solution as ex2(2x+y)2xex2+ex2dx=Ce^{-x^2} (2x+y)^{-2} - x e^{-x^2} + \int e^{-x^2} dx = C. This is a valid general solution. The integral ex2dx\int e^{-x^2} dx is a non-elementary function. So the solution can be written as: ex2(2x+y)2xex2+ex2dx=C\frac{e^{-x^2}}{(2x+y)^2} - x e^{-x^2} + \int e^{-x^2} dx = C.