Solveeit Logo

Question

Question: The solution of the differential equation \(\frac{dy}{dx} = \frac{\sin y + x}{\sin 2y - x\cos y}\) ...

The solution of the differential equation

dydx=siny+xsin2yxcosy\frac{dy}{dx} = \frac{\sin y + x}{\sin 2y - x\cos y} is

A

sin2y= x sin y + x22+c\frac{x^{2}}{2} + c

B

sin2y = x sin y – x22+c\frac{x^{2}}{2} + c

C

sin2y = x + sin y + x22+c\frac{x^{2}}{2} + c

D

sin2y = x – sin y + x22+c\frac{x^{2}}{2} + c

Answer

sin2y= x sin y + x22+c\frac{x^{2}}{2} + c

Explanation

Solution

cosy dydx\frac{dy}{dx}= siny+x2sinyx\frac{\sin y + x}{2\sin y–x} put sin y = t