Solveeit Logo

Question

Question: The solution of the differential equation \(\frac{dy}{dx} = (4x + y + 1)^{2}\) is...

The solution of the differential equation dydx=(4x+y+1)2\frac{dy}{dx} = (4x + y + 1)^{2} is

A

4xy + 1 = 2 tan(2x – 2c)

B

4xy – 1 = 2 tan(2x – 2c)

C

4x + y + 1 = 2 tan(2x + 2c)

D

None of these

Answer

4x + y + 1 = 2 tan(2x + 2c)

Explanation

Solution

Let 4x + y + 1 = z ⇒ 4+dydx=dzdx4 + \frac{dy}{dx} = \frac{dz}{dx}dydx=dzdx4\frac{dy}{dx} = \frac{dz}{dx} - 4

dydx=(4x+y+1)2\frac{dy}{dx} = (4x + y + 1)^{2}

dzdx4=z2\frac{dz}{dx} - 4 = z^{2}dzdx=z2+4\frac{dz}{dx} = z^{2} + 4dzz2+4=dx\frac{dz}{z^{2} + 4} = dx

12tan1z2=x+c\frac{1}{2}\tan^{- 1}\frac{z}{2} = x + ctan1(4x+y+12)=2x+2c\tan^{- 1}\left( \frac{4x + y + 1}{2} \right) = 2x + 2c

∴ 4x + y + 1 = 2tan (2x + 2c)