Solveeit Logo

Question

Question: The solution of the differential equation \(\frac{dy}{dx} = x^{2} + \sin 3x\) is...

The solution of the differential equation dydx=x2+sin3x\frac{dy}{dx} = x^{2} + \sin 3x is

A

y=x33+cos3x3+cy = \frac{x^{3}}{3} + \frac{\cos 3x}{3} + c

B

y=x33cos3x3+cy = \frac{x^{3}}{3} - \frac{\cos 3x}{3} + c

C

y=x33+sin3x+cy = \frac{x^{3}}{3} + \sin 3x + c

D

None of these

Answer

y=x33cos3x3+cy = \frac{x^{3}}{3} - \frac{\cos 3x}{3} + c

Explanation

Solution

We have dy=(x2+sin3x)dxdy = (x^{2} + \sin 3x)dxdy=(x2+sin3x)dx\int_{}^{}{dy = \int_{}^{}{(x^{2} + \sin 3x)dx}}y=x33cos3x3+cy = \frac{x^{3}}{3} - \frac{\cos 3x}{3} + c