Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The solution of the differential equation ydx+xdyydxxdy=x2exyy4\frac{y dx + x dy}{y dx - x dy} = \frac{x^{2} e^{xy}}{y^{4}} satisfying y(0)=1y(0) = 1, is :

A

x3=3y3(1exy)x^3 = 3y^3 (1 - e^{-xy} )

B

x3=3y3(1+exy)x^3 = 3y^3 ( - 1 + e^{xy} )

C

x3=3y3(1exy)x^3 = 3y^3 (1 - e^{xy} )

D

x3=3y3(1+exy)x^3 = 3y^3 (- 1 + e^{-xy} )

Answer

x3=3y3(1exy)x^3 = 3y^3 (1 - e^{-xy} )

Explanation

Solution

Answer (a) x3=3y3(1exy)x^3 = 3y^3 (1 - e^{-xy} )