Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = e ^ { x } + \cos x + x + \tan ...

The solution of the differential equation

dydx=ex+cosx+x+tanx\frac { d y } { d x } = e ^ { x } + \cos x + x + \tan x is

A

y=ex+sinx+x22+logcosx+cy = e ^ { x } + \sin x + \frac { x ^ { 2 } } { 2 } + \log \cos x + c

B

y=ex+sinx+x22+logsecx+cy = e ^ { x } + \sin x + \frac { x ^ { 2 } } { 2 } + \log \sec x + c

C

y=exsinx+x22+logcosx+cy = e ^ { x } - \sin x + \frac { x ^ { 2 } } { 2 } + \log \cos x + c

D

y=exsinx+x22+logsecx+cy = e ^ { x } - \sin x + \frac { x ^ { 2 } } { 2 } + \log \sec x + c

Answer

y=ex+sinx+x22+logsecx+cy = e ^ { x } + \sin x + \frac { x ^ { 2 } } { 2 } + \log \sec x + c

Explanation

Solution

dydx=ex+cosx+x+tanx\frac { d y } { d x } = e ^ { x } + \cos x + x + \tan x

On integrating both sides, we get