Solveeit Logo

Question

Question: The solution of the differential equation \(\frac { d y } { d x } = \frac { ( 1 + x ) y } { ( y - 1...

The solution of the differential equation dydx=(1+x)y(y1)x\frac { d y } { d x } = \frac { ( 1 + x ) y } { ( y - 1 ) x } is

A

logxy+x+y=c\log x y + x + y = c

B

log(xy)+xy=c\log \left( \frac { x } { y } \right) + x - y = c

C

logxy+xy=c\log x y + x - y = c

D

None of these

Answer

logxy+xy=c\log x y + x - y = c

Explanation

Solution

dydx=(1+x)y(y1)x\frac { d y } { d x } = \frac { ( 1 + x ) y } { ( y - 1 ) x } can be written as

y1ydy=(1+x)xdx\frac { y - 1 } { y } d y = \frac { ( 1 + x ) } { x } d x(11y)dy=(1+1x)dx\left( 1 - \frac { 1 } { y } \right) d y = \left( 1 + \frac { 1 } { x } \right) d x

(ylogy)=(x+logx)+c( y - \log y ) = ( x + \log x ) + cxy+logxy=cx - y + \log x y = c .

y1ydy=(1+x)xdx\frac { y - 1 } { y } d y = \frac { ( 1 + x ) } { x } d x(11y)dy=(1+1x)dx\left( 1 - \frac { 1 } { y } \right) d y = \left( 1 + \frac { 1 } { x } \right) d x

(ylogy)=(x+logx)+c( y - \log y ) = ( x + \log x ) + cxy+logxy=cx - y + \log x y = c .