Question
Mathematics Question on Differential equations
The solution of the differential equation dxdy=−(3x2+y2x2+3y2),y(1)=0 is
A
loge∣x+y∣−(x+y)2xy=0
B
loge∣x+y∣−(x+y)22xy=0
C
loge∣x+y∣+(x+y)2xy=0
D
loge∣x+y∣+(x+y)22xy=0
Answer
loge∣x+y∣+(x+y)22xy=0
Explanation
Solution
Put y=vx
v+xdxdv=−(3+v21+3v2)
xdxdv=−3+v2(v+1)3
(v+1)3(3+v2)dv+xdx=0
∫(v+1)34dv+∫v+1dv−∫(v+1)22dv+∫xdx=0
(v+1)2−2+ln(v+1)+v+12+lnx=c
(x+y)2−2x2+ln(xx+y)+x+y2x+lnx=c
(x+y)22xy+ln(x+y)=c
∴c=0, as x=1,y=0
∴(x+y)22xy+ln(x+y)=0
So, the correct answer is (D) : loge∣x+y∣+(x+y)22xy=0