Question
Mathematics Question on Differential equations
The solution of the differential equation dxdy=f(x)yf′(x)−y2 is
A
f(x)=y+C
B
f(x)=y(x+C)
C
f(x)=x+C
D
None of the above
Answer
f(x)=y(x+C)
Explanation
Solution
The given equation is dxdy=f(x)yf′(x)−y2 ⇒yf′(x)dx−f(x)dy=y2dx ⇒y2yf′(x)dx−f(x)dy=dx \Rightarrow d\left\\{\frac{f(x)}{y}\right\\}=d x On integration, we get yf(x)=x+C ⇒f(x)=y(x+C)