Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation dydx=yf(x)y2f(x)\frac{dy}{dx}=\frac{yf '\left(x\right)-y^{2}}{f \left(x\right)} is

A

f(x)=y+Cf(x) = y+C

B

f(x)=y(x+C)f(x) = y(x+C)

C

f(x)=x+Cf(x) = x+C

D

None of the above

Answer

f(x)=y(x+C)f(x) = y(x+C)

Explanation

Solution

The given equation is dydx=yf(x)y2f(x)\frac{d y}{d x}=\frac{y f^{\prime}(x)-y^{2}}{f(x)} yf(x)dxf(x)dy=y2dx\Rightarrow y f^{\prime}(x) d x-f(x) d y=y^{2} d x yf(x)dxf(x)dyy2=dx\Rightarrow \frac{y f^{\prime}(x) d x-f(x) d y}{y^{2}}=d x \Rightarrow d\left\\{\frac{f(x)}{y}\right\\}=d x On integration, we get f(x)y=x+C\frac{f(x)}{y}=x+C f(x)=y(x+C)\Rightarrow f(x)=y(x+C)