Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation dydx=xy+yxy+x\frac{dy}{dx} = \frac{xy + y}{xy + x} is

A

x+ylogcyxx + y - \log \frac{cy}{x}

B

x+y=log(cxy)x + y = \log (cxy)

C

xylogcxyx - y - \log \frac{cx}{y}

D

yx=logcxyy - x = \log \frac{cx}{y}

Answer

yx=logcxyy - x = \log \frac{cx}{y}

Explanation

Solution

dydx=dy+yxy+x\frac{ dy }{ dx }=\frac{ dy + y }{ xy + x } dydx=y(x+1)x(y+1)\Rightarrow \frac{ dy }{ dx }=\frac{ y ( x +1)}{ x ( y +1)} (y+1y)dy=(x+1x)dx\Rightarrow \int\left(\frac{ y +1}{ y }\right) dy =\int\left(\frac{ x +1}{ x }\right) dx (1+1y)dy=(1+1x)dx\Rightarrow \int\left(1+\frac{1}{ y }\right) dy =\int\left(1+\frac{1}{ x }\right) dx y+logy=x+logx+logc\Rightarrow y +\log y = x +\log x +\log c yx+logylogx=logc\Rightarrow y - x +\log y -\log x =\log c yx+logxy=logc\Rightarrow y - x +\log \frac{ x }{ y }=\log c yx=logclogyx\Rightarrow y - x =\log c -\log \frac{ y }{ x } yx=logc+logyx\Rightarrow y - x =\log c +\log \frac{ y }{ x } yx=log(cxy)\Rightarrow y - x =\log \left(\frac{ cx }{ y }\right)