Solveeit Logo

Question

Mathematics Question on Differential equations

The solution of the differential equation dydx=(x+y)2\frac{dy}{dx} = (x +y)^2 is

A

1x+y=c \frac{1}{x+y} = c

B

sin1(x+y)=x+c \sin^{-1} (x + y) =x +c

C

tan1(x+y)=c \tan^{-1} (x +y) = c

D

tan1(x+y)=x+c \tan^{-1} (x +y) = x +c

Answer

tan1(x+y)=x+c \tan^{-1} (x +y) = x +c

Explanation

Solution

Let x+y=t1+dydx=dtdxx + y = t \: \Rightarrow \: 1 + \frac{dy}{dx} = \frac{dt}{dx} dtdx1=t2dtdx=t2+1dtt2+1=dx\frac{dt}{dx}-1=t^{2} \Rightarrow \frac{dt}{dx} =t^{2} +1 \Rightarrow \int\frac{dt}{t^{2}+1} = \int dx tan1t=x+ctan1(x+y)=x+c\Rightarrow \tan^{-1}t =x+c \Rightarrow \tan^{-1}\left(x+y\right)=x+c