Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The Solution of the differential equation dydx=2exy+x2ey\frac{dy}{dx}=2e^{x-y}+x^{2}e^{-y} is

A

ey=2ex+x33+ce^{-y}=2e^{x}+\frac{x^{3}}{3}+c

B

ey=2ex+x33+ce^{y}=2e^{-x}+\frac{x^{3}}{3}+c

C

ey=2ex+x33+ce^{y}=2e^{x}+\frac{x^{3}}{3}+c

D

ey=2ex+x33+ce^{-y}=2e^{x}+\frac{x^{-3}}{3}+c

Answer

ey=2ex+x33+ce^{y}=2e^{x}+\frac{x^{3}}{3}+c

Explanation

Solution

Given, dydx=2exy+x2ey\frac{d y}{d x}=2 e^{x-y}+ x^{2} e^{-y}
dydx=2ex1ey+x21ey\Rightarrow \frac{d y}{d x}=2 e^{x} \cdot \frac{1}{e^{y}}+x^{2} \cdot \frac{1}{e^{y}}
dydx=1ey(2ex+x2)\Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}}\left(2 e^{x}+x^{2}\right)
eydy=(2ex+x2)dx\Rightarrow e^{y} d y=\left(2 e^{x}+x^{2}\right) d x
On Integrating both sides, we get
eydy=(2ex+x2)dx\int e^{y} d y=\int\left(2 e^{x}+x^{2}\right) d x
ey=2ex+x33+C\Rightarrow e^{y}=2 e^{x}+\frac{x^{3}}{3}+C
which is the required solution.