Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The solution of the differential equation dydx+2yx1+x2=11+x22\frac{d y}{d x}+\frac{2 y x}{1+x^{2}}=\frac{1}{1+x^{22}} is

A

y(1+x2)=c+tan1xy (1 + x^2) = c + \tan^{-1} x

B

y1+x2=c+tan1x\frac{y}{1+x^2} = c + \tan^{-1} x

C

ylog(1+x2)=c+tan1xy \, \log (1 + x^2) = c + \tan^{-1} x

D

y(1+x2)=c+sin1xy(1 +x^2) = c + \sin^{-1} x

Answer

y(1+x2)=c+tan1xy (1 + x^2) = c + \tan^{-1} x

Explanation

Solution

Given Equation is dydx+2yx1+x2=1(1+x2)2\frac{d y}{d x}+\frac{2 y x}{1+x^{2}}=\frac{1}{\left(1+x^{2}\right)^{2}}
It is comparing with linear differential equation dydx+py=Q\frac{d y}{d x}+p y=Q, we get
p=2x1+x2p =\frac{2 x }{1+ x ^{2}} and Q=1(1+x2)2Q =\frac{1}{\left(1+ x ^{2}\right)^{2}}
Now, IF =ePdx=e2x1+x2dx=e^{P d x}=e^{\frac{2 x}{1+x^{2}} d x}
e(log1+x2)=1+x2e^{\left(\log 1+x^{2}\right)}=1+x^{2}
Solution of differential equation is
y(1+x2)=1(1+x2)2(1+x2)dx+cy\left(1+x^{2}\right)=\int \frac{1}{\left(1+x^{2}\right)^{2}}\left(1+x^{2}\right) d x+c
y(1+x2)=1(1+x2)dx+c\Rightarrow y \left(1+ x ^{2}\right)=\int \frac{1}{\left(1+ x ^{2}\right)} d x + c
y(1+x2)=tan1x+c\Rightarrow y \left(1+ x ^{2}\right)=\tan ^{-1} x + c
y=tan1x1+x2+c\Rightarrow y =\frac{\tan ^{-1} x }{1+ x ^{2}}+ c